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Bimodal elastomer networks, so called due to their nominal bimodal molecular weight distribution of
starting oligomers, are of continued interest due to the enhanced strength and toughness seen in certain
mixtures. Researchers have suggested that the enhanced properties stem from the particular micro-
mechanics of the networks formed by these systems at these optimal compositions. This work extends
an existing analytical constitutive model for bimodal elastomer networks by incorporating aspects of
network topology, including network connectivity patterns and realistic chain length distributions,
determined through computational simulations of the formation of the network structure. These factors
are included as functions of bimodal composition and are shown to affect the predicted mechanical,
optical, and orientation responses of the network. The extended model elucidates how the naturally
occurring doubled connection topology creates a micro-mechanism that lowers overall chain orientation
in the lower molecular weight component and recreates experimentally observed optical response
phenomena. Specifically, the model predicts that the presence of the stiff, contractile, doubled connec-
tions forces the rest of the network to conform more to the macroscopic stretch ratio while reducing the
measured average orientation of the lower molecular weight component in the system; the effect
diminishes as the composition-dependent population of doubled connections in the system decreases.

� 2008 Elsevier Ltd. All rights reserved.
1. Background

The fact that certain bimodal compositions of poly-
dimethylsiloxane (PDMS) elastomer have shown anomalously high
strength and toughness properties [1–3], and exhibited nonlinear
stress–optic response in the small deformation range [4,5], led
them to be a subject of continuing experimentation [6–9],
modeling [10–12], and computational simulation [13–17]. These
bimodal PDMS elastomers, so called because of their bimodal
molecular weight distributions of starting oligomers, have shown
up to five-fold increases in strength at certain mixture composi-
tions. The history of the study of bimodal PDMS has been an effort
to catalogue, to model and predict, and to explain the root causes of
this behavior. A more detailed accounting of these past efforts can
be found in Refs. [12,16,17].

The notion that the two components engage in differential load
sharing within the elastomer network has emerged as a central
tenet of this research. Key experiments and simulations suggesting
that the more stiff short chains support more loading and that the
more compliant long chains support less can be found in Refs.
All rights reserved.
[9,13], as well as several others. Constitutive models which yield
differential mechanical stretching in the two components of the
material exist as well [10–12].

These efforts have prompted researchers to look more closely at
the formation of the elastomer network microstructure of these
materials [15–17] in an effort to develop improved models capable
of explaining network response by incorporating effects of network
topology on network behavior. This work focuses on extending an
existing bimodal network constitutive theory [12] to include the
computationally predicted evolution of network topology as it
changes with changes in the constituents [17]. This extension
provides a non-Gaussian, non-affine, phantom model which
incorporates computationally predicted self-reinforcing topologies
which form naturally during the computational crosslinking
process. This new study highlights the direct effects of the
computationally determined doubled connection topology, which
was found to occur more predominantly in bimodal mixtures that
showed increased strength and toughness [12], on the orientation
and mechanical behavior of the network. Ref. [16] defines doubled
connection found through computational simulations in the
following manner:

Two tetra-functional agents in the gel may be connected by at most
three molecular chains. A connection is defined as any chain or
chains linking two separate reactive agents. The infrequent
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Fig. 1. Geometric contraction of a real bimodal network into a schematic of a representative series bimodal chain with short (S), long (L), and doubled short (S2) chain segments. The
chain axis is considered a principal axes with respect to bulk deformation.
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occurrence of tripled connections is statistically insignificant. A
doubled connection occurs when pairs of reactive agents are
linked by two distinct molecular chains.

The occurrence of the doubled connection topology has been
reported in previous work and shown to correlate well with
increased strength and toughness properties seen experimentally
[16]. In addition, previous work that sought computationally to
address the radial chain length distributions of bimodal networks
in the annealed, undeformed state has found several results that
reveal short-chain clustering in the simulated networks at certain
mixture compositions [17]. These results mirrored short-chain
clustering seen in previous light scattering experiments performed
on bimodal PDMS [6,7].

For example, two-dimensional simulations clearly showed
short-chain clustering occurring in bimodal networks having 85%
short chains, but not in unimodal short chain systems given the
same short chain molecular weights in both cases (see Ref. [17],
Figs. 1 and 2). Similarly, the radial chain length distribution func-
tions of undeformed, annealed, fully three-dimensional systems
were shifted to lower values in bimodal systems as compared to
unimodal networks having the same short chain molecular
weights. Those shifted short chain distributions showed distinct
upturns as the chain lengths approached zero indicating a sharp
rise in the fraction of chains at very short (r< (1/2)rrms) lengths.
Results across a range of compositions similar to Table 2 also
showed that as the fraction of short chains was increased (i.e. as it
approached a unimodal short system) the effect was negated and
clustering around the very short chain lengths ceased to occur [17].

Theoretical work outlined in Ref. [12] indicated that doubled
short chains in the undeformed state existed at equilibrium lengths
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Fig. 2. Incorporation of the bimodal chain with S, L, and S2 segments in the eight-
chain unit cube model for network averaging. Bimodal chain stretch ratio is a function
of macroscopic principal stretch ratios, l1, l2, and l3. The unit cube is assumed to align
with the principal axes of deformation.
below that of singly-connected short chains, which would arguably
increase the local clustering effect of the short chains. It is this very
effect which is shown in this work to lead, theoretically, to
a decrease in the combined measure of orientation of both the
singly and the doubly connected short chains.

The evolution of network structure is critical in our under-
standing of bimodal network behavior. The evolution of pop-
ulations of specific self-reinforcing topologies has been cataloged
previously and seems to play an important role in network rein-
forcement [16]. Therefore, it is informative to include the formation
of these structures as a function of composition into a constitutive
model. The addition to the bimodal constitutive model proposed
here incorporates the results of network simulations performed on
PDMS specimens given parameters to match those materials tested
by the authors and those found in data in the literature by Mark
[1,10]. Further, these simulated networks have been computation-
ally annealed in order to generate more realistic in situ radial
distribution functions of the short and long chains; this annealing
step was shown to significantly shift the distributions by varying
degrees based on the network’s composition [17]. Evolution of
network connectivity patterns is included by quantifying the
occurrence of so-called doubled connections as a function of
bimodal composition. The inclusion of these structure–property
relationships aids in explaining mechanisms for the differential
stretching and orientation seen experimentally in bimodal
networks.

The following section will briefly highlight the existing consti-
tutive framework discussed in Ref. [12], laying the foundation for
this extension. The modeling presented in this work is an extension
of a previously published bimodal chain theory; for more detailed
argumentation for its basis and motivation please refer to Ref. [12].
The goal of this extension is to highlight the effects of incorporating
the evolution of network structure (determined from computa-
tional simulation) into the original bimodal chain theory. Compu-
tational simulation techniques used in this work follow previously
published methodologies and are discussed in Section 3.1. Incor-
poration of these topological effects causally reproduces behaviors
indicative of those seen in actual experiments on PDMS, which
allows the model to provide insight into bimodal network behavior.
2. Constitutive model for bimodal elastomers

2.1. Original bimodal chain model

The bimodal network theory begins with a geometric contrac-
tion of a real bimodal network into an idealized series arrangement
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of long and short elastomeric molecules, or chains. The original
model included a long chain and a short chain component
comprised of long and short chains in series, respectively. A
detailed discussion of arguments in favor of the series arrangement
is given in Ref. [12]. In short, the series arrangement was initially
chosen because it represented the preponderance of chain-to-chain
connection modalities seen in computational simulations, e.g.
singly-connected crosslinks. Parallel connections constituted less
than 6% of the total number of connections in simulated networks
[17]; most bimodal compositions had less than this maximum value
of 6%. Even so, the current model overcomes this limitation by
including parallel connections according to their populations in the
simulations for a particular bimodal composition (see Fig. 1).

Each bimodal chain is assumed to behave according to the freely-
jointed chain model which predicts differing force versus stretch ratio
responses for the long and short chains. The freely-jointed chain
model gives the force stretch ratio response of an elastomeric mole-
cule represented as N randomly oriented, rigid steps of length d as

f ¼ kQ

d
L�1ðcÞ; (1)

where k is Boltzmann’s constant, Q is absolute temperature, d is the
length of a Kuhn step, and c is the fractional extension of the chain
given by

c ¼ r
rmax

; (2)

where r is the current end-to-end vector length of the chain, and
rmax¼Nd is its maximum possible length. The Langevin function is
defined as

LðzÞ ¼ cothðzÞ � 1
z
; (3)

such that its inverse is given by the familiar infinite series
representation

z ¼ L�1ðcÞ ¼ 3cþ 9
5

c3 þ 297
175

c5 þ/ (4)

The freely-jointed chain model assumes entropic concerns over-
shadow internal energy considerations which is consistent with
prevailing theory on elastomers [18]. The force stretch ratio law is
central to the derivation of the model because it dictates the force
equilibrium constraints as will be shown in a later section.
2.2. Augmented bimodal chain model

The extended model now adds a doubled short chain compo-
nent to the series arrangement of long and short chains owing to
the computationally determined occurrence of statistically signifi-
cant populations of this topology at mixtures that experimentally
exhibit enhanced properties (see Fig. 1). In Fig. 1, a representative
portion of a real network (shown boxed at left) is drawn sche-
matically in a contraction of the structure (at right). The contrac-
tion, called a bimodal chain, is composed of a long chain component
(L), a short chain component (S), and the new doubled short chain
component (S2) in series. Essentially, the series arrangement in the
bimodal chain reproduces crosslink-to-crosslink connectivity in its
most probable and most direct mode of occurrence while the
doubled connection topology, a parallel arrangement, incorporates
what has surfaced as possibly important phenomena in bimodal
networks. Network effects, i.e. interchain connectivity and the
larger, more parallel-like structure generally associated with poly-
mer networks, will be accounted for by incorporating the bimodal
chain structure into a network averaging scheme.
The freely-jointed chain model’s requirement of the determi-
nation of the current and maximum lengths of a constituent
molecule during deformation and the chain arrangement lead to
the natural development of geometric compatibility and force
equilibrium constraints. With the inclusion of the doubled short
chain component these constraints become nonlinear and differ
greatly from the previously derived bimodal network theory.

2.3. Force equilibrium

Equilibrium between the L, S, and S2 components in a bimodal
chain necessitates that

fS ¼ fL ¼ fS2: (5)

where fi is the force in the i-th component. Assuming equivalent
persistence lengths of chains in each segment and equivalent
temperatures, the freely-jointed chain model of Eq. (1) in
conjunction with equilibrium of the bimodal chain geometry yields

L�1ðcSÞ ¼ L�1ðcLÞ ¼ 2L�1ðcS2Þ; (6)

where the factor of two on the last term stems from the existence of
two chains per connection in the doubled connection segment.
Adherence to Eq. (6) enforces equilibrium throughout the structure
but more importantly it gives a direct apportioning of deformation
between the S, L, and S2 components.

Equilibrium between S and L components, represented by the
first two terms in Eq. (6) yields a simple relationship between
fractional extensions,

cS ¼ cL: (7)

By first assuming that r¼ lro (where l is the stretch ratio in the
component) relates the current to original length of the chains in
the segment, next that the original length is given by a scaled RMS
length

ro ¼ j
ffiffiffiffi
N
p

d (8)

and finally that the maximum length is given by rmax¼Nd, the first
equilibrium constraint, Eq. (7), reduces to

jSlSffiffiffiffiffiffi
NS

p ¼ jLlLffiffiffiffiffiffi
NL

p : (9)

The relationship in Eq. (9) provides a direct determination of the
apportionment of stretch ratio between long chains and the short
chains in the singly-connected segments of the bimodal chain. The
RMS scaling, j, originates from the observed divergence of the
simulated average initial lengths of chains in bimodal networks
from the RMS assumption after computational annealing [17].
Deviation from the RMS assumption is incorporated into the model
through j.

Force equilibrium between the S and L components, and the S2
component of the bimodal chain requires more complicated anal-
ysis. We first assume a relationship between the S and S2 compo-
nent’s fractional extensions,

cS2 ¼ bcS; (10)

where b is a function of the S component’s fractional extension that
we write in polynomial form

bðcSÞ ¼ b0 þ b1cS þ b2c2
S þ b3c3

S þ/ (11)

such that from Eq. (6)

L�1ðcSÞ ¼ 2L�1ðbcSÞ: (12)
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Next we utilize a Pad�e

ˇ

approximation to the inverse Langevin to
recast the constraint given by Eq. (12). The approximation is
accurate within 1% over the range c¼ [0,1]; it is given by

L�1ðcÞzc
3� c2

1� c2: (13)

Eq. (12) now becomes

cS
3� c2

S

1� c2
S

¼ 2

"
ðbcSÞ

3� ðbcSÞ
2

1� ðbcSÞ
2

#
: (14)

Eq. (14) was solved numerically for b at 400 discrete values of cS

over the range [0,1]. The numerical solution to Eq. (14) is
a smooth, continuous function over [0,1] which is well approx-
imated by the cubic polynomial given by b0¼ 0.4985,
b1¼0.0488, b2¼�0.0423, b3¼ 0.5111 (the regression coefficient
associated with these coefficients is R¼ 0.9997). The maximum
error in the approximation over the range cS¼ [0,0.97] is 0.52%;
at cS¼ 0.99 the error is 1.47%. The solution to Eq. (14) need only
to be found once; it is valid for all fractional extensions in the
relevant range.

The error in the solution to Eq. (14) is a direct assessment of the
error in the force equilibrium constraint given in Eq. (5), or more
apparently as it is cast in Eq. (12). The maximum error in the force
balance on the range cS¼ [0,0.99] is less than 0.1%.

Combined with Eqs. (2), (10), and (11), the preceding analysis
produces the desired S to S2 stretch ratio apportionment,

cS2 ¼
jS2lS2ffiffiffiffiffiffiffiffi

NS2
p ¼

X
k¼0

bk

"
jSlSffiffiffiffiffiffi

NS
p

#kþ1

: (15)

Eqs. (9) and (15) give explicit relationships between stretch ratio in
the S, L, and S2 components based on mechanical equilibrium
directly. These stretch ratio relationships constitute a geometric
compatibility constraint.
2.4. Geometric compatibility

Each component in the bimodal chain is composed of a number
density, fi, of connections of type i¼ S, L, or S2. This number
density is found from

fi ¼ niVi; (16)

where ni is the number density of connections of type i in the
network and Vi is the volume fraction of chains of type i in the
network. In the representation, ni’s are not the standard unimodal-
chain densities, but rather are defined as the densities of connec-
tions of a given type. This definition is used in determining the
overall length and stretch ratio in the bimodal chain.

The stretch ratio of a bimodal chain can be determined from the
sum of the lengths of the individual components according to

lCH ¼
rCH

rCH o
¼ lS þ lL þ lS2

lS o þ lL o þ lS2 o
¼ fSrS þ fLrL þ fS2rS2

fSrS o þ fLrL o þ fS2rS2 o
;

(17)

where rCH and rCHo are the current and original lengths of the entire
bimodal chain, ri and rio are the current and original lengths of
individual chain connections in segment type i, and li¼ firi and
lio¼ firio are the current and original lengths of an entire i-type
segment, respectively. From Eq. (8) and the basic definition
of stretch ratio, r¼ lro, the stretch ratio in the bimodal chain is
given by
lCH ¼
fSjS

ffiffiffiffiffiffi
NS

p
dSlS þ fLjL

ffiffiffiffiffiffi
NL

p
dLlL þ fS2jS2

ffiffiffiffiffiffiffiffi
NS2

p
dS2lS2ffiffiffiffiffiffip ffiffiffiffiffiffip ffiffiffiffiffiffiffiffip :
fSjS NSdS þ fLjL NLdL þ fS2jS2 NS2dS2

(18)

Substitution of Eqs. (2), (8), (9) and (15) into Eq. (18) yields the
stretch ratio in the bimodal chain as a function of its composition
and the stretch ratio of the chains in its S component:

lCH¼

2
664

1þðfLNL=fSNSÞþðfS2NS2=fSNSÞ
P
i¼0

h
bi

�
jSlS=

ffiffiffiffiffiffi
NS

p �ii
1þðjLfL=jSfSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNL=NSÞ

p
þðjS2fS2=jSfSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNS2=NSÞ

p
3
775lS:

(19)

For any given amount of extension in the S component, Eq. (19)
predicts the stretch ratio in the bimodal chain while Eqs. (9) and
(15) will determine the stretch ratio in the L and S2 components,
respectively.

It is important to point out that lCH is shown to relate non-
linearly to lS and that the nonlinearity increases as lS increases due
to the series in the numerator of Eq. (19). This series represents the
stiffness of the S2 component resisting the deformation of the
bimodal chain. In fact, the results section will show that the stiff-
ness of the S2 component will force higher levels of stretch ratio
and orientation in the S and L components. As would be expected,
as fS2 / 0, the stretch ratio reduces to that given in Ref. [12] for
a bimodal chain without an S2 segment. Also expected are the
returns to unimodal cases if, with fS2¼ 0, either fL / 0 or fS / 0,
i.e. with fewer short chains the bimodal chain stretch ratio is
characterized by the stretch ratio in the long chains and vice versa.
The RMS scaling factor j, is also shown to play an important role in
stretch ratio apportionment especially in light of the S2
contribution.
2.5. Network averaging

Network averaging is accomplished using the eight-chain
contraction of a real network [19] (see Fig. 2). Each spar in the
eight-chain model is composed of a bimodal chain that is in turn
composed of S, L, and S2 segments subject to force and compati-
bility constraints. The spars radiate out from a central vertex to the
corners of a unit cube oriented in the principal stretch ratio space.
The model provides affine apportionment of stretch ratio from the
macroscopic principal values to the bimodal chain, however, chain-
level to segment-level stretch ratio apportionment is non-affine, i.e.
the S, L, and S2 segments stretch ratio values relate non-affinely to
the bimodal chain and thereby non-affinely to the macroscopic
value. Principal stretch ratio values are related to the stretch ratio in
a bimodal chain according to

lCH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ l2
2 þ l2

3

q
(20)

where li is the i-th principal stretch ratio. The eight-chain model
was shown to be highly effective in capturing higher order terms of
the orientation distribution function in Raman scattering experi-
ments [20] and in capturing the stress–stretch ratio and stretch
ratio–optic response in birefringence experiments in the two-
component bimodal theory [12] as well as the large deformation
stress [19] and stress–optic response in elastomers [21] warranting
its further use here.
2.6. Stress–stretch ratio response

With the macroscopic-stretch ratio to chain segment–stretch
ratio relationships known, the applied stress to macroscopic
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stretch ratio response is found from the change in entropy of the
bimodal chains in the unit cell as a function of macroscopic
deformation. An expression for the entropy based on Langevin
statistics [18],

s ¼ c� kNk

�
rk

Nkdk
Bk þ ln

Bk

sinh Bk

�
; Bk ¼ L�1

�
rk

rkjmax

�
; (21)

gives the individual chain entropy in terms of the parameters
associated with the chain connection type k, the stretch ratio as an
argument to the inverse Langevin function, B, Boltzman’s constant
k, and a reference value of entropy, c. The total entropy of the unit
cell is then found from the sum of contribution from each type of
chain connection in the network,

S ¼ fSsS þ fLsL þ fS2sS2: (22)

The total entropy expression in Eq. (22) leads to the principal stress
difference via the well known relationship,

si�sj ¼ li
vW
vli
� lj

vW
vlj

; (23)

where si and li are the principal stress and stretch ratio in the i-th
direction. In Eq. (21), r values are taken from the scaled RMS
assumption of Eq. (8). After applying Eqs. (16), (19) and (20), and
the chain rule, the resulting expression for stress is given as

si � sj ¼
kq

3
G1G2L�1

"
JSlSffiffiffiffiffiffi

NS
p

# 
l2

i � l2
j

lCH

!
; (24)

where

G1 ¼
"

fLNL þ fSNS þ 1=2fS2NS2

X
i¼0

"
ðiþ 1Þbi

 
jSlSffiffiffiffiffiffi

NS
p

!i##

(25)

and

G2¼

2
664

1þðfLNL=fSNSÞþðfS2NS2=fSNSÞ
P
i¼0

h
ðiþ1Þbi

�
jSlS=

ffiffiffiffiffiffi
NS

p �ii
1þðjLfL=jSfSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL=NS

p
þjS2fS2=jSfS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS2=NS

p
3
775

¼lCHlS:

(26)

In Eq. (24) the principal stress-difference has the same form as
the eight-chain model due to the similar unit cell geometry,
however, the stress is shown to scale nonlinearly with the
nonlinear stretch ratio apportioning of the short chains in Eqs.
(25) and (26).
2.7. Stress–optic and orientation response

The birefringence of the unit cell network is derived from the
polarizability, a direction dependent tensor quantity. Each spar in
the unit cell, and consequently each chain type assumed to reside
in each bimodal chain that comprises each spar, contribute to the
overall polarizability of the unit cell and thereby to the bire-
fringence. Detailed analysis of these relationships can be found in
[18,20,22]. The resulting relationship for the birefringence is
given as

Dhij ¼
 

2p
9

�
n2

o þ 2
�2

no

!
½G3 þ G4�

 
l2

i � l2
j

3l2
CH

!
(27)

where
G3 ¼ ðfSNSaS þ fLNLaLÞð1� 3QSÞ (28)

and

G4 ¼ ðfS2NS2aS2Þ
"

1� 6QS

X
k¼0

bk

"
jSlSffiffiffiffiffiffi

NS
p

#k#
(29)

and

QS ¼
3
�

jSlS=
ffiffiffiffiffiffi
NS

p �
L�1
�

jSlS=
ffiffiffiffiffiffi
NS

p �: (30)

In Eq. (27) the form of the eight-chain model’s birefringence rela-
tionship is preserved, however, the nonlinear effects of network
topology are apparent in Eq. (29) where the contribution of the S2
connections is scaled by a nonlinear dependence on the short chain
stretch ratio. It will be shown later that the difference in micro-
scopic stretch ratios between S and S2 components may account for
experimentally measured differences in orientation between the
short and long chains in bimodal systems.

2.8. Network topology and parameters

The bimodal network theory as described herein allows for the
incorporation of microstructural changes in topology through six
adjustable (best-fit) parameters and four fixed parameters found
from simulations. The six adjustable parameters are three unim-
odal-chain number densities, nS, nL, and nS2 and three numbers of
rigid Kuhn steps per chain, NS , NL , and NS2. These control the initial
modulus and the locking stretch ratio of unimodal samples of each
type. Logical constraints, however, will eventually reduce the
number of best-fit parameters to four.

The population of doubled short chain connections in the system,
x, is the primary fixed parameter. This parameter measures the frac-
tion of short chain connections that are doubled. The actual connec-
tion number densities of the S and S2 components in the network, nS

and nS2 , are two additional fixed parameters derived from x. The
values of nS and nS2 are found from the standard unimodal short chain
density, nS, scaled by this computationally determined population of
doubled short chain connections. The relationships are given by

nS2 ¼
2x

1þ x
nS (31)

nS ¼
1� x

1þ x
nS (32)

The relationship nS ¼ nS2 þ nS2 must hold, reflecting that the total
number of short chains per unit volume will equal the sum of singly
and doubly connected short chains per unit volume. For example, if
50% of the short chain connections are doubled, then z¼ 1/2,
nS2¼ 2/3 and nS¼ 1/3 showing that two-thirds of the short chains
per unit volume are involved in doubled connections (values are for
illustration only).

Since there are not a significant number of doubled long chain
connections, nL ¼ nL is taken as the unimodal long chain connec-
tion density. In addition, since the S and S2 components represent
the same molecular species, it is assumed that NS¼NS2. With these
assumptions, the model is reduced to having only four adjustable
parameters, nS, nL, NL and NS. A further strength of the model is that
only two sets of data of arbitrary composition are needed to
determine best-fit parameters for an entire mole fraction spectrum
of bimodal materials of a given molecular weight combination [12].

The remaining three structural parameters are the RMS scaling
factors, jS, jL, and jS2. The RMS scalings are determined by
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comparing the averages of the annealed radial distributions found
in simulations to the theoretical RMS lengths for freely-jointed
chains with the given number of Kuhn steps, Ni. Previous research
has shown that computationally annealed simulated networks of
freely-jointed chains have chain length distributions which differ
not only from the RMS assumption, but also from their unannealed
counterparts [17]. Consequently, incorporation of the annealed
structure into the constitutive model is an important improvement
of this method over previous works that analyzed the structure of
mechanically unequilibrated networks. In addition, it has been
shown that the mean value of the radial distribution changes with
composition [17] increasing the importance of the evolution of
topology with composition.

3. Simulations and topology

3.1. Simulation algorithm and systems studied

Simulations for this work were performed using a periodic
crosslinking algorithm called NETSIM developed by the author [16]
following the work of Eichenger [23,24]. In previous works the
algorithm has been shown to agree with sol/gel fraction calcula-
tions and experimentation on PDMS networks in the literature, has
uncovered a doubled connection topology in simulated networks,
and has shown evidence of possible short chain agglomeration in
simulations similar to what has been seen by experimenters using
light scattering experiments [16]. The NETSIM algorithm uses
a phantom, static nearest-neighbor crosslinking methodology on
a nearest-neighbor periodic reaction volume seeded with tetra-
functional crosslinking sites and di-functional end-linking polymer
chains. The algorithm can accommodate arbitrary bimodal molec-
ular weight distributions of molecules with known persistence
lengths. An outline of the procedure is given below. For more
details, please see Ref. [16].

The nearest neighbor search that numerically models the
crosslinking process matches tetra-functional crosslinking agents
to di-functional end-linking molecular chains. The unreacted chain
ends in the simulation are each matched to the closest available
crosslinking agent whose current functionality is �1. The process
marches forward in order of proximity up to a fixed reaction radius
(from the chain end) that sets the extent of the reaction. The closest
pairs ‘react’ first.

The real crosslinking event adds several complexities including
reaction probabilities that vary with extent of reaction, current
functionality of the crosslinking agent, distance between prospec-
tive reactants and kinematics of the reactants. However, the
simulation procedure has been used in several works most notably
those of Eichenger [23,24], and shows good agreement with
experimental gelation studies for many different constituent
topology combinations in those and other works [16].

In these simulations, at certain mixture ratios of long and short
chains the spacing of crosslinking agents and the length of the short
polymer chains are such that two crosslinking agents may find
themselves closest to opposite ends of the same short chain; this
appears to happen in higher proportions at some mixture ratios
(and thereby spacings) over other mixture ratios, hence we see
more doubled connections forming more often at these mixtures.

In relation to the possibility of ‘‘doubled connections’’ in the
actual crosslinking process, the argument is that the crosslinking
agents are distributed randomly, but their spacing can be measured
relative to the end-to-end length of the average (short) molecular
chain. Since the spacing of the crosslinking agents is governed by
the ratio of constituents, their molecular weights, and the stoichi-
ometry of the reaction, one can vary the relative spacing of the
crosslinking agents by varying the constituents and achieve an
optimum, with respect to the end-to-end chain lengths, that
produces a higher probability of forming doubled connections. The
optimum will, necessarily, change with composition as well. The
occurrence of doubled connection in simulations provides a useful
metric of changes in network topology that agrees well with
experimentally determined changes in network strength and
toughness [16].

The original NETSIM algorithm has been automated to perform
large scale mapping of the connectivity characteristics of simulated
networks formed from a range of bimodal mixture compositions. For
this work, the algorithm sampled the structures of bimodal networks
having short chain molecular weight MS¼ 260–1060 at increments of
200 with a fixed long chain molecular weight ML¼ 21,300. For each
molecular weight combination the mole fraction of short chains, mS,
was varied from 60% to 100% in increments of 2%. These systems were
chosen because a good deal of literature exists on the behavior of
these materials at similar compositions [1,3,4,5,12,16,17,23,24].
Finally, each mixture of each molecular weight combination was
simulated 10 times to generate an average of the structural charac-
teristics. The nearest-neighbor periodic simulation cell was seeded
initially with 2000 linear, end-linking chains, 500 tetra-functional
reactive agents for perfect stoichiometry, and given parameters to
simulate the end-linking process of vinyl terminated PDMS. This
simulation size results in a representative volume element for this
periodic structure. This choice of parameters is detailed in Ref. [16].
The simulations were performed on a small cluster of sun worksta-
tions and servers comprised of one Sunblade 2000, two Sunblade
1000s, and seven Sunblade V100s.

3.2. Simulations results

3.2.1. Doubled connections
Fig. 3 shows a surface plot of the number of connections that are

doubled versus the mole fraction of short chains for simulated
bimodal networks having the short chain molecular weights and
mole fractions of short chains shown. The average number of
doubled connections ranges from 20.1 to 95.7 with the number of
doubled connections generally increasing with molar short chain
content. The increase in the number of doubled connections from
lower to higher short chain contents might seemingly follow from
the increase in populations of short chains in the system since there
are increasing numbers of short chains present, however, two
regions of the graph contradict this logic. Fig. 3 shows a decline in
the number of doubled connections as the short chain content
passes 90% across all compositions. In addition, the graph shows
a sharp decline in doubled connections, from roughly 80 down to
45 for a constant 100% short chain composition (the far right of the
graph) as molecular weight decreases. These trends go against
perfunctory expectations that suggest increasing populations of
short chains will monotonically increase the populations of
doubled connections.

Fig. 4 depicts the percentage of short chain connections that are
doubled versus the mole fraction of short chains for the same
bimodal networks as in Fig. 3. Trends in these data also contradict
an assumption of increased doubled connections due solely to
increasing short chain content. The average percentage of
connections that are doubled ranges from 2.1 to 5.2% showing
a peak in the light colored regions between 90% and 95% by mole
short chains. The fact that the maximum percentage of connections
that are doubled occurs at an intermediate mixture suggests that
the increase is not a sole function of the number of short chains
present. As with the numbers of doubled connections, Fig. 4 shows
a steep reduction in the percentage of doubled connections with
decreasing molecular weight at near unimodal short chain
compositions (far right, lower corner of graph).

In Figs. 3 and 4 it is interesting to note that the formation of
doubled connections is not solely a function of short chain
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population since the percentages as well as the raw numbers of
short chains that are doubled both increase with molar short chain
content up until mS¼ 0.9. The reversal of the trend, the decrease in
the populations and percentages of doubled connections beyond
mS¼ 0.9, further suggests that other factors related to composition
affect the topology of the networks formed. These results suggest
that one can achieve an optimal spacing of crosslinks, with respect
to the formation of doubled connections, for particular molecular
weight combinations. At these optimal mixtures and resulting
spacing the probability of forming a doubled connection is
increased. In essence, when the average spacing of crosslinks nears
the optimal value (near but not equal to the short chain length) the
probability of forming a doubled connection increases. The prob-
ability decreases as the average distance between crosslinks moves
away from the optimal spacing.

The surface plot data in Fig. 4 are used to construct an inter-
polation function relating the composition of the system, i.e.
molecular weight of the short chains, MS, and mole fraction of the
short chains, mS, to the percentage of doubled connections, x,
predicted in simulations. This value of x(MS,mS) was then used as
a structural parameter in Eqs. (31) and (32) of the extended
bimodal constitutive model. The form of the equation is given by

x ¼
X
i¼0

ciðMSÞiþdiðmSÞi; (33)

where ci and di are constant coefficients found from polynomial
least squares regression of the simulation data, and MS and mS are
the molecular weight and mole fraction, respectively, of the short
chain component of the bimodal system. The values of c and d are
given in Table 1. Fig. 5 shows the graph of Eq. (33) and the values are
given in Table 1. The figure shows that the interpolation does well in
capturing the trend in peak values near mS¼ 0.90 falling off as mS is
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3.2.2. Average end-to-end vector length
The averages of the annealed short chain radial distributions

tabulated from simulations of various bimodal compositions are
listed in Table 2. The specific bimodal compositions listed were
chosen to match samples for which experimental stress–strain and
stress–optic data are available in the literature. The table shows the
average end-to-end vector length of short chain connections for
several short chain compositions and molecular weight combina-
tions. The RMS scaling factors for the i-type connections in each
simulated network, ji where i¼ short or long, are then found from

ji ¼
ri

rrmsi

: (34)

Fig. 6 shows the data of Table 2 as a graph of jS versus mole fraction
short chains for three molecular combinations. The data show
interesting trends. For all three systems, the RMS scalings have
initial values of roughly 0.75 for the unimodal short (mS¼ 100%)
cases. In all three systems there is an abrupt increase in the
magnitude of RMS scaling as the mole fraction of short chains is
decreased; this increase in j, which occurs at different mS values for
each molecular weight combination, is followed by an abrupt
decrease in j in two of the three cases. The shift in j values is either
delayed or may not occur with an increase in long chain molecular
weight as seen in system 880. This may follow a simple logic that as
more long chains are introduced two things occur Eq. (1) the
average spacing between crosslinks increases and Eq. (2) the
networks are slow to move away from being short-chain domi-
nated as more compliant material is added to the network.
0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

260

660

1060

 Chain Content

Ms

s short molar chain content for varying molecular weights of the short chains, MS.



Table 1
Values of regression coefficients predicting fraction of doubled connections in
simulations

i c d

0 �3.717Eþ01 0.000
1 3.268E�03 226.884
2 �1.131E�05 �548.393
3 2.107E�08 789.394
4 �1.877E�11 �832.306
5 6.225E�15 630.602
6 0.000Eþ00 �226.156
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The first point will directly increase the distance between short
chains due to the lower chain density of higher molecular weight
material. For a given volume, higher molecular weight linear end-
linking materials require fewer crosslinking agents for stoichiom-
etry. Therefore, the crosslink density will be lower resulting in
increased spacing between crosslinks and consequently higher
chain length distributions. This effect was seen and reported
previously [16,17]. In Fig. 6 it is the cause of the increase in the short
chain lengths in all three systems. This increase in spacing is
matched in the long chains as well. Fig. 7 shows the average chain
lengths of the long chains for the same three molecular weight
combinations at the compositions as Fig. 6. Fig. 7 clearly shows the
initial increase in spacing with the increase of long chain content as
the amount of short chain material is reduced (and the amount of
long chain material is increased).

The second point comes about due to the notion of the existence
of mechanical equilibrium in the network. In general, higher
molecular weight elastomers are more compliant than lower
molecular weight elastomers. This is true of PDMS and has been
evidenced experimentally in simple stress–strain experiments. It
can also be seen theoretically from the freely-jointed chain model
that as the number of statistical segments is reduced (analogously
reducing the molecular weight) the stiffness of an individual elas-
tomeric molecule, as characterized by the slope of its force vs.
stretch ratio response, will stiffen.

In terms of a network, as more long chain material is introduced
into the network, the network moves away from being a uniformly
short chain dominated system to a heterogeneous one in which the
existing short chain material forces the compliant long chain
material to extend. To reach equilibrium between the short and
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Interpolation coefficients taken from Table 1 are used in Eq. (33).
long chains, the shorter chains must force this extension by con-
tracting to shorter lengths. In a completely short chain dominated
system this would not be possible, as evidenced by the nearly
uniform scaling factors, j, for the unimodal short chain cases in
Fig. 6, because all the chains have the same force versus stretch
ratio response. Systems 460 and 660 show the expected decrease in
short chain lengths with increasing long chain content beginning at
85% and 80% short chain compositions, respectively. The 660
system may be showing an extended region of elevated RMS
scaling due to the increased crosslink spacing before the decrease
resulting from the compliance of the existing long chains. A more
complete study of this phenomenon is warranted.

The results of simulations yield both the percentage of
connections that are doubled, x, and the RMS scaling factors, ji, for
connections of types S, S2, and L. For this work, we assume jS¼ jS2

letting the effects of the doubled connections manifest themselves
in the equilibrium constraints of Eqs. (10)–(15).
4. Modeling results

Figs. 8 and 9 show plots of stress versus stretch ratio for the
bimodal chain model in uniaxial compression as evidence of its
ability to characterize stress–stretch ratio data. The model without
topology, Fig. 8, has been shown to agree well with stress–stretch
ratio data for several molecular weight combinations having various
mole fractions of short chains [12]. The model is fit to data on the
21,300-660 bimodal systems tested by Mark [1] yielding the model
parameters in Table 3. The model is fit to data from the highest and
lowest mole fraction cases only. The intermediate mole fraction
response is predicted by the model’s apportioning of stretch ratio.

Best-fit results of the extended bimodal theory which includes
changing topology are given in Fig. 9. Computer simulations of the
bimodal network predict a change in the RMS scaling, j, of the
equilibrated (annealed), undeformed network (see Figs. 6 and 7)
that necessitates recalculation of adjustable parameters nS, nL, NS,
NL; the fixed parameters jS and jL, are taken from simulation
results in entries of columns 4–6 Table 2 while x is found from
simulation results characterized by Table 1 in conjunction with Eq.
(33). The resulting fixed parameters for the extended bimodal
theory are given in Table 4. Again, the fixed parameters are fit to the
highest and lowest mole fraction cases, only; intermediate cases are
fully predicted by the model.
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Table 2
Average annealed short chain lengths by short chain molecular weight and
composition [17]; ML¼ 21,300 for each case

Average of radial distribution of chain Lengths (Å)

mS MS¼ 460 mS MS¼ 660 mS MS¼ 880

Short Long Short Long Short Long

0.60 6.39 94.45 0.60 7.68 95.20 0.60 18.91 103.07
0.85 9.73 108.09 0.80 11.07 109.74 0.80 18.82 101.68
0.91 13.70 103.99 0.85 18.15 105.58 0.85 14.19 106.24
0.92 14.38 100.74 .908 13.83 104.36 0.91 14.62 105.80
0.95 12.54 104.19 .942 13.53 101.63 0.93 15.01 105.65
0.97 12.41 99.65 .951 13.99 101.64 0.95 15.10 102.96

.995 10.98 98.71 0.97 13.88 101.09 0.97 14.95 100.49
1.00 11.09 NA .985 13.47 102.25 0.98 14.54 102.98

.994 13.62 103.14 0.99 14.92 101.78
1.00 13.01 NA 1.00 14.49 NA

The compositions listed are chosen to correspond to data tested by Mark [1].
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Figs. 8 and 9 are representative of similar good results on the
complete mole fraction spectrums of bimodal PDMS systems
having MS¼ 460 and MS¼ 880 both with ML¼ 21,300 in uniaxial
tension with topology included (not shown). The model with
topology shows stress–stretch ratio results nearly indistinguishable
from the model without topology for best-fit parameters matched
to data except for a stiffening of the intermediate mole fractions’
response. The stiffening of intermediate mixtures is indicative of
load sharing that is better illustrated by observing stress–optic
results.

The ultimate goal of this work is to model the load sharing
behavior between the S, S2, and L components of the network,
specifically how this load sharing may change with mS and
molecular weight distributions of the constituents. Herein, differ-
ential load sharing in bimodal networks is quantified by the
difference in stretching and orientation of the components of the
network; these phenomena can be measured by optical or spectral
techniques. Previous analytical works have focused on predictions
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Table 2 having short chain molecular weights of 460 (>), 660 (6), and 880 (B) at the
indicated short molar chain composition; ML¼ 21,300 for each case. Lines drawn for
clarity.
of differential stretching as defined by lSslL [10,11] while exper-
imental efforts focus on more readily measurable quantities such as
the Herman’s orientation function [8,9]. Herman’s orientation
function, e.g. the first moment of the orientation distribution
function, is related to birefringence by

Dh

Dhmax
¼

3
	
cos2 f



� 1

2
; (35)

where the denominator on the left hand side of the equation is the
calculated birefringence at a fractional extension of unity and f is
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Table 4
Model fixed parameters with simulated topology information included

nS ¼ 2:6E20 NS ¼ 2:00
nL ¼ 7:0E18 NL ¼ 10:0
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the average angle between a polarizing unit (which is, in its most
irreducible form, a single monomer) and the draw axis [25]. Angled
brackets denote averaging over all scattering units. Increased
stretching and orientation of the polymer molecules are directly
linked to the onset of locking and the resultant upturn in stress in
uniaxial tension experiments [1–4,18,26]. At its extremes, the
Herman’s function has a value of 1 when the average polarizing unit
is aligned with the draw axis and a value of �1/2 when it is
perpendicular to the draw axis.

The notion that lSslL is itself straightforward and follows
directly from equilibrium constraints, Eqs. (5)–(9). Several
researchers have developed constitutive theories which predict
this behavior as well [10,11]. These same constraints, however,
namely Eq. (7), will yield equivalent birefringences, and thereby
equal amounts of orientation as measured by the Herman’s func-
tion, in Eqs. (27)–(30) if analyzed in a two-component (S, L)
bimodal system since assuming force equilibrium will predict
equivalent fractional extensions between the two components. The
model derived here, however, provides a mechanism for differen-
tial stretching and orientation, also seen experimentally, in bimodal
elastomer networks. This model’s ability to characterize both stems
from the inclusion of the S2 component. In spectral orientation
measurements (such as IR dichroisim and Raman scattering) and
calculations the S2 component is indistinguishable from the S since
they both have the same chemical backbone and average molecular
weight. Therefore, the S2 contributes to the orientation of the
entire short chain fraction of the system, Sþ S2, based on its rela-
tive population in the system.

Fig. 10 shows a plot of the short chain orientation function
versus molar short chain content for system 660 at a macroscopic
stretch ratio of l¼ 1.2 with and without the effects of topology in
the constitutive model. The line without topology shows a slight
Table 3
Model parameters with no simulated topology information included

nS ¼ 2:9E20 NS ¼ 3:10 jS ¼ 1:0 x ¼ 0:0
nL ¼ 1:0E17 NL ¼ 20:0 jL ¼ 1:0
increase in short chain orientation as the molar short chain content
is increased; the effect saturates between 70% and 91%, remaining
relatively constant for mS� 91%. It is important to remember that
the mechanical properties of system 660 were shown to change
dramatically through the 90–100% short chain contents. Fig. 9
clearly shows a much larger increase in the short chain orientation
function with increasing short chain content when topology is
included. The figure also shows that through the mS¼ 90–100%
range the orientation function increases by nearly 50%.

Fig. 11 plots the combined short (Sþ S2), doubly connected
short (S2), singly-connected short (S), and long (L) chain compo-
nent orientation functions versus molar short chain content, mS, for
the same bimodal PDMS system with MS¼ 660 and ML¼ 21,300 at
a macroscopic stretch ratio of l¼ 1.2 with varying topology
included. Force equilibrium leads to Eq. (9) which ensures that the L
and S components have the same fractional extensions which, in
turn, predicts equivalent orientations as seen in the figure. The
graph also shows that the constitutive model predicts that the long
chains (L) will slightly orient more than the combined short chains
(Sþ S2) for the given amount of macroscopic stretch ratio;. This
results from the low levels of orientation in the S2 component
reducing the average orientation of the entire population of short
chains, Sþ S2.

In Fig. 11 the model predicts Monnerie et al.’s finding that long
chains orient more than the short chains in a bimodal system for
a given amount of macroscopic stretch ratio. This prediction is also
in line with Monnerie’s finding that short chains orient less and
long chains orient more in bimodal systems than their unimodal
counterparts for a given amount of macroscopic stretch ratio. The
short chain orientation (Sþ S2) drops off as more long chains are
added and the long chain orientation (L) increases as more short
chains are added. Below mS¼ 60% the short and long orientations
are nearly equivalent due to the vanishing populations of doubled
connections. The low levels of orientation of the S2 component,
wherever present in the figure, also shows the reinforcing, nature
50% 60% 70% 80% 90% 100%
Molar Short Chain Content

Fig. 10. Orientation function of entire network versus mole fraction short chains as
predicted by bimodal theory with topology (solid line with diamonds) and without
topology (dashed line with squares) for bimodal PDMS with ML¼ 21,300 and MS¼ 660.
Values taken at a macroscopic uniaxial stretch ratio value of l¼ 1.2.
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of the doubly connected short chains which contract forcing
compliance from the network.

5. Conclusions

The original bimodal chain model was extended to include
computationally determined, composition-dependent changes in
network topology. The inclusion of the computationally predicted
S2, doubled connection, component into the original model’s
framework provides a micromechanics-based feature that shifts
predicted stretch ratio–stress and stress–optic behaviors. The new
model predicts load sharing in which the stiff S2 component forces
compliance from both the less stiff long (L) and the singly-con-
nected (and therefore less stiff) short (S) portions of the network.
Load sharing is determined from the Herman’s orientation function
which measures both chain stretch ratio and orientation.

Without the inclusion of the S2 component, the original model,
though able to predict differential stretching, predicted equivalent
S and L component orientations in disagreement with published
experimental results. The S2 component provides a load sharing
mechanism that suggests explanations for differential orientations
seen experimentally in bimodal networks and that captures trends
across compositions. Specifically, the model predicts that the
presence of the stiff, contractile, doubled connections forces the
rest of the network to conform more to the macroscopic stretch
ratio while reducing the measured average orientation of all short
chains in the system; the effect diminishes as the composition-
dependent population of doubled connections in the system
decreases.
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